数列的特征方程 (斐波那契数列)

特征方程

1、一阶线性递推数列

对于数列, 递推公式为

Xn=aX(n1)+b\begin{aligned} X_n &= aX_{(n-1)} + b \end{aligned}

Xnm=a(X(n1)m)\begin{aligned} X_n - m &= a(X_{(n-1)} - m) \end{aligned}

化简

Xn=aX(n1)am+m\begin{aligned} X_n &= aX_{(n-1)} - am + m \end{aligned}

与原递推式比较,得

b=mam\begin{aligned} b &= m - am \end{aligned}

1、二阶线性递推数列

对于数列, 递推公式为

Xn=aX(n1)+bX(n2)\begin{aligned} X_n &= aX_{(n-1)} + bX_{(n-2)} \end{aligned}

其特征方程

m2=am+b\begin{aligned} m_{^2} = am + b \end{aligned}

例:求斐波那契数列0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …的通项公式

其特征方程

m2=m+1\begin{aligned} m_{^2} = m + 1 \end{aligned}

解得

m1=1+52m2=152\begin{aligned} m_1 &= \frac{1+\sqrt{5}}{2} \\[2ex] m_2 &= \frac{1-\sqrt{5}}{2} \end{aligned}