ArrayList和LinkedList区别

数组和链表的区别

  • 数组

处理一组数据类型相同的数据。但是不允许动态定义数组的大小,即在使用数组之前必须确定数组的大小。这样数组中的有些空间可能不被使用,从而造成内存空间的浪费。当数据增加时,可能超出原先定义的元素个数,造成数组越界。数组插入删除时需要移动其他数据项。但是查询方便。
数组从栈中分配空间,对于程序员方便快速,数组无需初始化,因为数组元素在内存的栈区,系统自动申请空间。但是自由度小。数组元素在内存中连续。

  • 链表

链表动态的进行存储分配,可以适应数据动态地增减的情况,且可以方便地插入、删除数据项。链表插入和删除时,只需要改变个别元素之间的关系,这大大提高了链表的删除和插入的速度。查询时需要从前往后遍历。
链表从堆中分配空间,自由度大,但是申请管理比较麻烦,链表的结点元素在内存的堆区,每个元素须手动申请空间。链表在内存中不一定连续。

ArrayList

简介

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Default initial capacity.
* ArrayList 默认的数组容量
*/
private static final int DEFAULT_CAPACITY = 10;

/**
* Shared empty array instance used for empty instances.
* 用于空实例的共享空数组实例
*/
private static final Object[] EMPTY_ELEMENTDATA = {};

/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
* 另一个共享空数组实例,用的不多,用于区别上面的EMPTY_ELEMENTDATA
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
* ArrayList底层的容器
*/
// Android-note: Also accessed from java.util.Collections
transient Object[] elementData; // non-private to simplify nested class access

/**
* The size of the ArrayList (the number of elements it contains).
* 当前存放了多少个元素 并非数组大小
*/
private int size;

ArrayList是基于动态数组的数据结构。实现了list接口,是以数组的方式实现的。所谓动态数组是这样实现的,如果没有指定数组的大小,则申请默认大小为10 的数组,当元素个数增加,数据无法存储时,系统会另外申请一个长度为当前长度的1.5倍的数组,然后把之前的数据拷贝到新建的数组中。
数组的特征是可以使用索引的方式来快速定位对象的位置。适合读取数据。

ArrayList源码分析

添加

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* 添加指定元素到末尾
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}

private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}

ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
modCount++;

// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}

//扩容
private void grow(int minCapacity) {
// overflow-conscious code
//1. 记录之前的数组长度
int oldCapacity = elementData.length;
//2. 新数组的大小=老数组大小+老数组大小的一半
int newCapacity = oldCapacity + (oldCapacity >> 1);
//3. 判断上面的扩容之后的大小newCapacity是否够装minCapacity个元素
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//4.判断新数组容量是否大于最大值
//如果新数组容量比最大值(Integer.MAX_VALUE - 8)还大,那么交给hugeCapacity()去处理,该抛异常则抛异常
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
//5. 复制数组,注意,这里是浅复制
elementData = Arrays.copyOf(elementData, newCapacity);

private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
  1. 首先判断添加一个元素是否会导致数组溢出
  2. 判断是否溢出:如果原数组为空,那么第一次添加数组时会给数组一个默认大小10,接着判断是否溢出,如果溢出则去扩容,扩容规则:新数组是原数组大小的1.5倍,最后通过Arrays.copyOf()去浅复制
  3. 添加元素到末尾

获取

1
2
3
4
5
6
7
8
9
/**
* 返回指定位置处元素
*/
public E get(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

return (E) elementData[index];
}

通过下标获得数组中的元素

移除

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public E remove(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

modCount++;
E oldValue = (E) elementData[index];
// 复制的长度
int numMoved = size - index - 1;
if (numMoved > 0)
//数组之间的复制
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work

return oldValue;
}
1
2
3
4
5
public static native void arraycopy (Object src,//源数组
int srcPos,//源数组要复制的起始位置
Object dest,//目的数组
int destPos,//目的数组放置的起始位置
int length)//复制的长度

数组自己复制自己,跳过需要移除的下标元素

修改

1
2
3
4
5
6
7
8
public E set(int index, E element) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
}

替换index索引处的元素为element,可能会抛出IndexOutOfBoundsException.这里比较简单,就是将index处的元素替换成element

ArrayList总结

  1. 底层是object数组存数据
  2. 扩容机制:默认大小是10,扩容是扩容到之前的1.5倍大小,每次扩容是将原数组中的数据复制到新的数组中
  3. 添加:如果是添加到数组的指定位置,那么可能会挪动大量的数组元素,并且可能会触发扩容机制;如果是添加到末尾的话,那么只可能触发扩容机制.
  4. 删除:如果是删除数组指定位置的元素,那么可能会挪动大量的数组元素;如果是删除末尾元素的话,那么代价是最小的. ArrayList里面的删除元素,其实是将该元素置为null.
  5. 查询和改某个位置的元素是非常快的( O(1) ).

LinkedList

简介

  • LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。有关索引的操作可能从链表头开始遍历到链表尾部,也可能从尾部遍历到链表头部,这取决于看索引更靠近哪一端。
  • LinkedList 实现 List 接口,能对它进行队列操作。
  • LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
  • LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
  • LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
  • LinkedList 是非同步的。

LinkedList源码分析

内部结构

LinkedList内部是一个双向链表的结构
关键字transient 序列化对象的时候,这个属性就不会序列化到指定的目的地中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
transient int size = 0;

/**
* Pointer to first node. 指向链表头部
*/
transient Node<E> first;

/**
* Pointer to last node.指向链表尾部
*/
transient Node<E> last;

private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;

Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}

构造函数

默认构造方法是空的,什么都没做,表示初始化的时候size为0,first和last的节点都为空:

1
2
3
4
5
/**
* Constructs an empty list.
*/
public LinkedList() {
}

带Collection值得对象作为入参的构造函数

1
2
3
4
5
6
7
8
9
10
11
12
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();//调用默认的无参构造函数
addAll(c);
}

添加

add(E e) 添加到链表末尾

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
linkLast(e);
return true;
}
/**
* Links e as last element.
*/
void linkLast(E e) {
// 记录 尾结点
final Node<E> l = last;
//新加一个尾结点
final Node<E> newNode = new Node<>(l, e, null);
//新的尾结点赋值给链表的尾结点
last = newNode;
//如果之前的尾结点为空
if (l == null)
first = newNode;//链表的头结点=尾结点=新结点 (相当于空链表插入第一个元素,头结点等于尾节点)
else//如果不为空,
l.next = newNode;//将之前的尾结点的next指针指向新的结点
//增加链表长度
size++;
modCount++;
}

add(E e)添加成功返回true,添加失败返回false.分配内存空间不是必须是连续的,所以只要是还能给它分配空间,就不会添加失败.当空间不够分配时(内存溢出),会抛出OutOfMemory.

addLast(E e) 添加元素到末尾

内部实现和add(E e)一样

1
2
3
4
5
6
7
8
9
10
 /**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
*/
public void addLast(E e) {
linkLast(e);
}

addFirst(E e) 添加元素到链表头部

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
* Inserts the specified element at the beginning of this list.
*
* @param e the element to add
*/
public void addFirst(E e) {
linkFirst(e);
}

/**
* Links e as first element.
*/
private void linkFirst(E e) {
//记录头结点
final Node<E> f = first;
//新建头结点
final Node<E> newNode = new Node<>(null, e, f);
//新建的结点赋值给链表的头结点
first = newNode;
//如果之前头结点为空
if (f == null)
last = newNode;//头结点=尾结点=新建的结点 (相当于空链表插入第一个元素,头结点等于尾节点)
else //如果不为空
f.prev = newNode;//之前头结点的 prev指针指向 新建的结点
//增减链表长度
size++;
modCount++;
}

add(int index, E element) 添加元素到指定位置

可能会抛出IndexOutOfBoundsException

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/**
* Inserts the specified element at the specified position in this list.
* Shifts the element currently at that position (if any) and any
* subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
//检查是否越界
checkPositionIndex(index);

if (index == size)
linkLast(element);//和 add(E e) 添加到链表末尾相同
else
linkBefore(element, node(index));
}
/**
*检查是否越界
*/
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* Returns the (non-null) Node at the specified element index.
* 返回指定元素索引处的(非空)节点。
*/
Node<E> node(int index) {
// assert isElementIndex(index);
//如果index在链表的前半部分,那么从first开始往后查找;否则,从last往前面查找
if (index < (size >> 1)) {
//记录第一个节点
Node<E> x = first;
//循环从第一个节点开始往后查,直到达到index处,返回index处元素
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
//index在链表的后半部分,记录最后一个节点
Node<E> x = last;
//循环从最后一个节点开始往前查,直到达到index处,返回index处的元素
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}

/**
* Inserts element e before non-null Node succ.
* 在非null节点succ之前插入元素e。
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
//记录succ的前一个结点
final Node<E> pred = succ.prev;
//新建一个结点,前结点是pred ,数据是e,下一个结点是succ
final Node<E> newNode = new Node<>(pred, e, succ);
//将新的结点赋值给 succ的前结点
succ.prev = newNode;
//如果之前的succ的前一个结点 pred 为空
if (pred == null)
first = newNode;//如果为空,那么说明succ是之前的头节点.现在新节点在succ的前面,所以新节点是头节点
else
pred.next = newNode;//否则,直接将succ的前一个节点pred指向新节点就可以了
//增加链表长度
size++;
modCount++;
}
  1. 首先判断插入的位置是在链表的最后还在在中间
  2. 如果是插入到链表的末尾,那么将之前的尾结点指向新的结点
  3. 如果是插入到链表中间
  4. 需要找到index 处的结点
  5. 将新结点赋值给index处结点的前一个(prev)结点
  6. 将index处结点的前一个结点的next指针指向新结点

将指定集合的所有元素插入到末尾位置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.
*
* @param index index at which to insert the first element
* from the specified collection
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection<? extends E> c) {
//1. 检查是否越界
checkPositionIndex(index);
//将插入的集合转成数组
Object[] a = c.toArray();
// 记录插入元素集合的个数
int numNew = a.length;
如果个数为0,那么插入失败,不继续执行了
if (numNew == 0)
return false;

Node<E> pred, succ;// 目标索引的前一个结点,目标索引的结点
//判断下插入的index和链表size是否相等,相等则相当于在链表末尾插入
if (index == size) {
succ = null;//index 处结点为null
pred = last;// indext处前结点 为尾结点
} else {//否则,插入中间
succ = node(index);//找到index 处结点
pred = succ.prev;//记录index处前一个结点
}
//循环将集合中所有元素连接到pred后面
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
//如果前一个是空,那么将新节点作为头结点
if (pred == null)
first = newNode;
else
pred.next = newNode;//指向新节点
pred = newNode;
}
//判断succ是否为空,为空的话,那么集合的最后一个元素就是尾节点
if (succ == null) {
last = pred;
} else {//非空的话,那么将succ连接到集合的最后一个元素后面
pred.next = succ;
succ.prev = pred;
}
//8. 链表长度+numNew
size += numNew;
modCount++;
return true;
}

offer() offerLast(E e) 添加元素到链表尾部

1
2
3
4
5
6
7
8
9
10
/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}
1
2
3
4
5
6
7
8
9
10
11
 /**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}

offerFirst(E e) 添加元素到链表头部

1
2
3
4
5
6
7
8
9
10
11
 /**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}

删除

E remove(),removeFirst() 移除链表第一个元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
* Retrieves and removes the head (first element) of this list.
*移除链表第一个元素
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
}
/**
* Removes and returns the first element from this list.
*移除和返回 链表的第一个元素
* @return the first element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
/**
* Unlinks non-null first node f.
* 将第一个结点删掉
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
//记录第一个结点的数据值
final E element = f.item;
//记录下一个结点
final Node<E> next = f.next;
//将第一个结点置空,帮助Gc 回收
f.item = null;
f.next = null; // help GC
//将之前头结点的下一个结点 赋值为头结点
first = next;
//如果为空,则链表没有结点了,
if (next == null)
last = null;
else//否则,将新节点的prev指针置为空
next.prev = null;
//链表长度 -1
size--;
modCount++;
// 返回删除结点的数据值
return element;
}
/**
* The number of times this list has been <i>structurally modified</i>.
* Structural modifications are those that change the size of the
* list, or otherwise perturb it in such a fashion that iterations in
* progress may yield incorrect results.
*/
protected transient int modCount = 0;

E remove(int index) 移除指定位置元素

1
2
3
4
5
6
7
8
9
10
11
/**
* Removes the element at the specified position in this list. Shifts any
* subsequent elements to the left (subtracts one from their indices).
* Returns the element that was removed from the list.
*/
public E remove(int index) {
////检查入参是否合法/越界
checkElementIndex(index);
////node(index)找到index处的节点
return unlink(node(index));//删除index处的结点
}

removeLastOccurrence(Object o) 从此链表中删除最后一次出现的指定元素o.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
* Removes the last occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
* 遍历时是从尾节点开始往前查找的.
*/
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}

E poll() 获取第一个元素的同时删除第一个元素,当链表无节点时,不会报错.

1
2
3
4
5
6
7
8
9
10
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}

E pop() 获取第一个元素的同时删除第一个元素,当链表无节点时,会报错.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}

修改

E set(int index, E element) 设置index处节点数据值为element

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Replaces the element at the specified position in this list with the
* specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
//检查是否越界
checkElementIndex(index);
//找到index处节点
Node<E> x = node(index);
//保存该节点旧值
E oldVal = x.item;
//替换为新值
x.item = element;
//将旧值返回
return oldVal;
}

查询

E element() E getFirst() 获取链表第一个元素. 方法比较简单,就是将链表头节点数据值进行返回

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E element() {
return getFirst();
}
/**
* Returns the first element in this list.
*
* @return the first element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}

E getLast() 获取链表最后一个元素. 非常简单,就是将last的数据值返回

1
2
3
4
5
6
7
8
9
10
11
12
 /**
* Returns the last element in this list.
*
* @return the last element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}

E get(int index) 获取指定索引处元素. 就是通过node(index)找到index索引处节点,然后返回其数据值

1
2
3
4
5
6
7
8
9
10
11
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}

ArrayList与LinkedList使用场景

  • 对于随机访问get和set,ArrayList觉得优于LinkedList,因为LinkedList要移动指针。
  • 对于新增和删除操作add和remove,LinedList比较占优势,因为ArrayList要移动数据。